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The Lagrangian L for gravity waves of small but finite amplitude in an N-layer 
stratified fluid is constructed as a function of the generalized coordinates q,(t) = {qY,(t)} 
of the N +  1 interfaces, where the q’, are the Fourier coefficients of the expansion of 
the interfacial displacement q,(x, t) in a complete, orthogonal set {Ilm(x)}. The density 
is constant in each layer, by virtue of which a velocity potential exists for that layer 
(even though the full flow is rotational). The explicit expansion of L is constructed 
through fourth-order in q, and 4, through an extension of the surface-wave 
formulation (Miles 1976), in which the pressure appears as the Lagrangian density 
(Luke 1967). Three-dimensional progressive and standing interfacial waves in a 
two-layer fluid are treated as general examples, and the two-dimensional results of 
Hunt (1961) and Thorpe (1968) are recovered as explicit examples. It is shown that 
the spatial resonance between surface and internal waves conjectured by Mahony & 
Smith (1972) is impossible for the two-layer Boussinesq model. 

The joint limit N f  00 and layer thickness$O yields the Lagrangian density L for 
a continuously stratified, Boussinesq fluid as a functional of qn(y) and Q,(g), where 
9, the counterpart of the layer index, is a Lagrangian (rather than Eulerian) 
coordinate. The coefficient C in the nonlinear dispersion relation ( O / W ~ ) ~  = 1 + Ck2A2 
for progressive waves of frequency w ,  wavenumber k and amplitude A ,  where 
o1 = wl(k )  for infinitesimal waves, is determined for any density profile for which the 
(linear) vertical structure problem can be solved. Explicit results are given for a fluid 
of finite vertical extent in which the buoyancy frequency is constant and for a 
vertically unbounded fluid in which the buoyancy frequency varies like sech ( y / h )  
and C = C(kh). 

1. Introduction 
The primary purpose of the following development is the construction of the 

Lagrangian for gravity waves of small but finite amplitude in a stratified, inviscid 
fluid with a rigid bottom, a free upper surface and a cylindrical boundary (which 
includes the limiting case of a laterally unbounded fluid) as an explicit function of 
an appropriate set of generalized coordinates. [Those earlier Hamiltonian formulations 
for stratified flow with which I am familiar - e.g. Seliger & Whitham (1968), Milder 
(1982) and Henyey (1983) - are concerned primarily with the general form of the 
Hamiltonian or Lagrangian functionals from which the equations of motion can be 
derived through Hamilton’s principle, rather than with explicit representations in 
generalized coordinates.] The extension to stratified shear flows is considered in the 
following paper (Miles 1986). 

Weakly nonlinear, two-dimensional waves in a stratified fluid have been considered 
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by Hunt (1961) and Thorpe (1968u, b ) .  Hunt obtained third-order (in amplitude) 
approximations to the profiles and quadratic approximations to  the frequencies of 
interfacial progressive waves in a two-layer fluid with rigid upper and lower 
boundaries and the corresponding results for standing waves in a vertically unbounded 
fluid. Thorpe ( 1 9 6 8 ~ )  extended Hunt’s results for standing waves to a two-layer fluid 
of finite vertical extent and obtained second-order descriptions of both standing 
(1968a) and progressive (1968b) waves in a continuously stratified fluid using the 
Boussinesq approximation ; however, he did not establish the amplitude dependence 
of dispersion for progressive waves. Both Hunt and Thorpe used perturbation 
expansions of the type pioneered by Stokes and Levi-Civita. 

Tsuji & Nagata (1973) have extended Hunt’s expansion to fifth order for 
progressive waves on the interface between two vertically unbounded fluids. Holyer 
(1979) has determined the wave of maximum amplitude, and Meiron & Saffman (1983) 
have obtained numerical solutions for overhanging waves, for this configuration. 

The present formulation follows that for surface waves in a homogeneous fluid 
(Miles 1976, hereinafter referred to as I), which has proved useful for various 
investigations of nonlinear stability and chaotic-motion problems (e.g. Miles 
1984u, b ) .  The free-surface displacement in that problem may be posited in the form 
~ ( x ,  t )  = qn( t )  +‘n(x), where x = (q, x2) is the horizontal coordinate, {ykn(x)> is a 
complete set of normal modes, q = {qn(t)}  is the corresponding set of generalized 
coordinates, and the summation convention is implicit. The Lagrangian then has the 
form 

where S is the cross-sectional area of the cylinder and 

a m n  = a m n a n  + a z m n  qz ++jlmn qjqt + ... (1.2) 

is an inertial matrix (with the dimensions of length). The truncation amn = S,, an 
implies (through Hamilton’s principle) a set of uncoupled differential equations for 
the qn( t ) ,  the solution of which completes the classical description (in particular, 
determines the natural frequencies) of small oscillations. The two-term truncation 
a,, = S,, an + azmn ql yields a set of quadratically coupled differential equations, 
which typically provide a second-order description of the nonlinear surface waves. 
It is necessary to proceed to  the three-term truncation displayed in (1.2) to determine 
the amplitude dependence (which is quadratic in this approximation) of the resonant 
frequencies. 

This formulation for a homogeneous fluid may be extended to a stratified fluid that 
is modelled by a sequence of N layers, in each of which the density is constant. A 
flow started from rest then is irrotational, and a velocity potential exists, within each 
layer [the overall flow is rotational, with the vorticity being concentrated a t  the 
interfaces; cf. Lamb 1932, $2311. In  $2, I express the Lagrangian for such a layer 
as a functional of the velocity potential 4, and the displacements of the upper and 
lower boundaries (which may be rigid or free surfaces or interfaces with adjacent 
layers) q + ,  - where the subscript f signifies upperllower. In  $3, I posit the Fourier 
expansions q+ = q,f ( t )  $ n ( ~ )  and a corresponding expansion of q5 and determine the 
coefficients in the latter expansion in terms of q; and q$ through the requirement 
that the Lagrangian be stationary with respect to  variations of q5. The Lagrangian 
for a single layer then may be placed in the form p S L l ( q , , 4 + , q - , 4 - ; d ) ,  wherein d 
and S are respectively the thickness and area of the undisturbed layer. The 
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corresponding Lagrangian for an N-layer fluid in which the density, thickness and 
generalized coordinates of the upper and lower boundaries of the vth layer are p,, d,, 
q, and qv-l ,  respectively, is given by 

It is worth emphasizing that (1.3) does not require the Boussinesq approximation, 
although this approximation is subsequently invoked in some of the examples and 
in the limiting case of continuous stratification. 

The configuration of a single interface with rigid boundaries (the simplest, 
non-trivial two-layer problem) is obtained by setting N = 2, q,, = q2 = 0, q1 = q,  
pl,2 E pT and dl ,2  = d , .  I consider three-dimensional standing and progressive 
waves for this configuration in $$4 and 5, respectively, and reproduce the two- 
dimensional results of Hunt (1961) and Thorpe (1968a. b) after allowing for (what 
appear to be) typographical errors therein. Explicit, three-dimensional examples are 
straightforward in principle but algebraically complicated. 

I originally undertook the present investigation in connection with the conjecture 
of Mahony & Smith (1972) that a spatial resonance might, occur between surface and 
internal waves of comparable wavenumbers k and 2k respectively, and disparate 
natural frequencies, w, and wi, where (wI/wJ2 = O(s) and B is a measure of the 
stratification. It turns out, however, that the coupling between these two modes is 
O(s), rather than 0(1 )  as in Mahony & Smith’s model problem of spatial resonance 
between aerial and surface waves, and the putative resonance is either impossible or 
realized only at higher order (in which case it presumably would be of limited 
geophysical interest). I therefore have relegated this particular application to the 
Appendix. 

The Lagrangian for a continuously stratified fluid, in which q(x, y ,  t) = q,(y, t )  $,(x) 
and y is a Lagrangian (rather than an Eulerian) coordinate, may be obtained by 
setting d ,  = 6, y = v6, p, = p(y), and D = N6 in (1.3) and then letting 640 with D 
fixed. I carry out this limit in $6 for a Boussinesq fluid (in which the inertial effects 
of stratification are neglected), apply the result to progressive waves, and obtain 
second-order approximations to 7 and the dispersion relation for any density profile 
for which the (linear) vertical structure problem can be solved. Considering the 
particular cases of finite depth with a linear density profile and infinite depth with 
a hyperbolic tangent density profile, I obtain Thorpe’s (1968b) approximations to 7 
and the corresponding dispersion relations (which appear to be new). 

It should be emphasized that, although the Lagrangian formulation appreciably 
simplifies the algebra for standing- and progressive-wave problems in which the time 
dependence is harmonic, it  is most valuable in attacking problems of stability and 
chaotic motion in which a basic harmonic time dependence is slowly modulated, with 
the typical representation 

q,(t) = a,(?) cosnwt+b,(r) sinnwt, 

where r is a slow time. Averaging the Lagrangian over the fast period 2n/w then 
leads, through the invocation of Hamilton’s principle, to a set of evolution equations 
for the a, and b,. Examples are parametrically excited solitary waves in a long 
channel (Miles 19844, forced, internally resonant surface waves in a circular cylinder 
(Miles 1984b), and stratified shear flow over a sinusoidal bottom (Miles 1986). 
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2. Lagrangian for single layer 
We consider the irrotational motion of a layer of incompressible fluid that is 

bounded laterally by a rigid cylinder of cross-section S and above and below by the 
interfaces y = !jd+++(x,t) and y = -?&++-(x,t), where x and y are horizontal and 
vertical coordinates. The Lagrangian for this motion may be posed in the form (Luke 
1967; Whitham 1974, pp. 435-6) 

where p is the pressure and, here and subsequently, the alternative signs are 
vertically ordered. Invoking the assumptions of incompressibility and irrotationality , 
we have 

P = Po-P(4,++V+*V4+gY), (2.2) 

where po is the (static) equilibrium pressure a t  y = 0, p is the density, +(x, y, t )  is a 
velocity potential (velocity = V4) that satisfies 

v24 = 0 (2.3) 

and n-V4=O oni3S, (2.4) 

and #t E a$/at = a, 4. We also impose the constraint 

Jlr], dS = Jlr]- dS = 0. 

Conservation of volume implies only that these last two integrals are equal, but we 
ultimately assume that r] = 0 at the lower boundary of an N-layered fluid, by virtue 
of which (2.5) holds at  each of the interfaces. If the lower boundary is rigid but of 
variable relief, the origin of y may be chosen to make the mean value of 7 vanish. 

Substituting (2.2) into (2.1) and invoking (2.5) and the identities 

4tdy = atJu+4dr(4r]t)12 Y- (2.6) 

and 

which follows from Green's theorem, (2.3) and (2.4), we transform (2.1) to 

Y = p S L + P ,  9 = p,Sd-pat (2.8a, b)  

where L = s-'JJ[4r]t-~(4,-vv*v4)-La'll:'ds. (2.9) 

The functional 9 makes no contribution to the variation of the action, 9 dt, and 
therefore is of no further interest. The remaining Lagrangian, pSL, is a functional 
of #, v +  and v-. 
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Substituting (6.20) into (6.16) and (6.17), introducing A E &A,, and invoking (5.1), 
(6.9) and (6.10), we obtain 

and 

e) (6.21) 
A2 

7 = A cos(kz-ot) sin cos2(kz-wt) sin - 

(Ey = 1 +fk2A2. (6.22) 

The approximation (6.21) is equivalent to Thorpe's (1968b) equation (3.3.4) if his 
fa = 0 and his z is replaced by his z,?, which is equivalent to the present Lagrangian 
coordinate y .  The approximation (6.22), which appears to be new, presumably owes 
its simplicity (in particular, its independence of D )  to the uniformity of N; cf. (6.25) 
below. 

The corresponding results for the dominant mode of the profile 

N2=--sech2 ( -00<y<oo)  
2 h  lg' (h) 

(6.23) 

(the origin of y having been shifted) are 

cos(kz-wt)-- 2 ( - 3 ~ + 2  3K ) kA2(sech~)" tmh: cos2(kx-wt), (6.24) 

which is equivalent to Thorpe's (19683) equation (3.3.21) if his f3 = 0 and his z is 
interpreted as above, and 

( 12K2 + 17K + 3, r ( K + $ )  f(2K) 
(6.25a, b )  (E)' = 1 +C(K) k2A2, C = 

(3~+2)f (K)r(2K+%) 

where (6.26a, b )  

The coefficient C increases from t at  K = 0 through a rather flat maximum 
(0.730 < C < 0.736 for 0.94 < K < 3.65) and then decreases to an asymptote of 2-t 
as ~f 00. We remark that the limit ~ $ 0  in (6.24) and (6.25) corresponds to the limit 
h,, h-f 00 in (5.10) and (5.11). 

It should be remarked that the Boussinesq approximation renders the formulation 
in this section inapplicable to very long, nonlinear (e.g. cnoidal or solitary) waves; 
cf. Long (1965) and Benjamin (1966). It also implies non-uniform validity in a very 
deep fluid in which the cumulative density change, albeit gradual, is substantial; cf. 
Drazin (1969). 

This work was supported in part by the Physical Oceanography Division, National 
Science Foundation, NSF Grant OCE81-17539, and by the Office of Naval Research 
under Contract N00014-84-K-0137, NR 062-318 (430). 

t Dr Thorpe (personal communication) informs me that the substitution z-tz,, is implicit in his 
(3.3.4) and (3.3.21). 

17-2 
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Appendix. Coupling between surface and internal waves 

is replaced by 
We now suppose that the upper surface of the two-layer fluid is free, so that (4.1) 

(A 1 )  
9 
S - = p- L,(q,, 41,0,0; d-) +p+ L,(q,, 42,41,41; d+L 

where q1,2 = {qkz}  is the generalized coordinate (matrix) of the interface/free surface. 
It is expedient to introduce normal modes through the transformation 

= q i + c n q i ,  qL = qi-ecnq;,  (A 2a, b )  

where q i s  are the normal coordinates of the internal/surface waves, e is defined by 
(4.10) (withp, = p+), and the summation convention applies (in this Appendix) only 
in (A 5). The form of (A 2) ensures the absence of quadratic coupling terms (of the 
form q k  q i )  in the potential energy. Invoking the corresponding condition (the 
absence of grn qi) for the kinetic energy, we find that c, must satisfy 

c,-1 = 0, 1 E )  a:+ (1  + e )  a, 

where a; and S$ are defined by (3.7) for the upper/lower layer, and (as required 
by the anticipated roles of q t  and qS,) that root of (A 3) that is O(1) as €40 (the 
Boussinesq limit) is to be selected (see below). The quadratic component of the 
Lagrangian then reduces to 

P m n  [ *  - * I = fa: [(q: 1' - (w: qS, )'I + iak[(af ) - (4 q;IZI 9 

a: = (1 -2c, S; + c i )  at + (1 + E )  c i  a,, 

a; = (1 + 2ec, 8: + $c:) a: + (1 + e )  a,, 

ai  a:, 

(A 4) 

(A 5a)  

(A 5 b )  

( 0 : ) 2  = (l+€&, (W',)Z = e(l+e&)J. (A 6a, b )  

where (cf. Lamb 1932, $231) 

Letting €40 in (A 3), (A 5 )  and (A 6 ) ,  we obtain 

a;+a:+a;, ( A  7a,  b,  C) 
S: a: - sinh k, d- 1 

cn+- - aS, -+ 
a:+a, sinhk,d ' k, tanh k, d'  

wherein d = d++d-, and 

(A 8% b )  (wS,)," +gk, tanh k, d, ( w ' , ) ~  + 
egkn 

coth k, d+ + coth k, d- ' 

which correspond to surface waves in water of depth d and interfacial waves in an 
enclosure with a rigid upper boundary (as in $4). 

We now address the problem of two-dimensional, nonlinear coupling between a 
surface wave of wavenumber k and an internal wave of wavenumber 2k, for which 
the $n are given by (4.9) and 

q i  = &in qi,  da = a z n  qz. (A ga, b)  

Mahony & Smith (1972) have conjectured that quadratic coupling (cubic coupling 
in the Lagrangian) between these two modes could induce a resonant excitation of 
the slow mode through heterodyning between the fast mode, externally driven at a 
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frequency o = wy, and its sidebands at  w k c r ,  where cr = ui. (The second harmonic 
of the surface wave at wavenumber 2k will also be quadratically excited, but this 
component of the full solution has no effect on the internal wave in the present 
approximation.) 

Substituting ( 3 . 1 0 ~ )  into (A 1)  and invoking (4.9), (A 4) and (A 9), we obtain 

L = H[Qf- ~ ~ ~ P 1 ~ 2 l + ~ ~ : ~ Q ~ - ~ ~ : 4 2 ~ 2 l + ~ l 1 2 P 1 Q 1 Q 2 + ~ ~ 2 1 1 P 2 Q ~ + ~ 4 ,  (A 10) 

where the coefficients of the quadratic terms are given by (A 5 )  and (A 6), 

+cl(cl -8:) (1 +cc2 S t ) ]  - (1 + E )  a; a; cf}, ( A  11 a)  

a 2 1 1  = E C ~ ~ ~ ( C ; L  -c2) + D211{a:P[(c1 - 8t)2 + E C ~ (  1 - c1 - (1  + E )  my2 ct}, (A 11 b )  

and the quartic component L4 is implicitly determined by (3.9b), (3.10b), and 
(A 9a, b). It follows from (A 11) (after considerable algebraic reduction) that al12 and 
a211 are O(E)  and therefore negligible in the Boussinesq approximation, in which O(E) 
is retained only in o', (A 86). It also can be shown that al12 and a211 vanish in the 
limit of a deep lower layer (kd- t 00).  It therefore appears that the putative resonance 
between the surface and internal waves is realized only a t  higher order if at all.? 

R E F E R E N C E S  

BENJAMIN, T. B. 1966 Internal waves of finite amplitude and permanent form. J. Fluid Mech. 

DRAZIN, P. G .  1969 Non-linear internal gravity waves in a slightly stratified atmosphere. J. Fluid 

HENYEY, F. S. 1983 Hamiltonian description of stratified fluid dynamics. Phys. Fluids 26,4047.  
HOLYER, J. Y. 1979 Large amplitude progressive interfacial waves. J. Fluid Mech. 93, 433438. 
HUNT, J. N. 1961 Interfacial waves of finite amplitude. La Houille Blanche 16, 515-531. 
LAMB, H. 1932 Hydrodynamics. Cambridge University Press. 
LONQ, R. R. 1965 On the Boussinesq approximation and its role in the theory of internal waves. 

LUKE, J. C. 1967 A variational principle for a fluid with a free surface. J. Fluid Mech. 27,395-397. 
MAHONY, J. J. & SMITH, R. 1972 On a model representation for certain spatial resonance 

MEIRON, D. J. & SAFFMAN, P. G. 1983 Overhanging interfacial gravity waves of large amplitude. 

MILDER, D. M. 1982 Hamiltonian dynamics of internal waves. J. Fluid Mech. 119, 269-282. 
MILES, J. W. 1976 Nonlinear surface waves in closed basins. J. Fluid Mech. 75, 419448. 
MILES, J. W. 1984a Parametrically excited solitary waves. J. Fluid Mech. 148, 451460. 
MILES, J. W. 1984b Resonantly forced surface waves in a circular cylinder. J. Fluid Mech. 149, 

MILES, J. W. 1986 Weakly nonlinear Kelvin-Helmholtz waves. J. FZuid Mech. 172, 513-529. 
PHILLIPS, 0. M. 1977 The Dynamics ofthe Upper Ocean. Cambridge University Press. 
SELIQER, R. L. BE WHITHAM, G. B. 1968 Variational principles in continuum mechanics. Proc. R. 

SIMMONS, W. F. 1969 A variational method for weak resonant wave interactions. Proc. R. Soc. 

25, 241-270. 

Mech. 36, 433446. 

Tellus 17, 46-52. 

phenomena. J. Fluid Mech. 53, 193-207. 

J .  Fluid Mech. 129, 213-218. 

15-31. 

SOC. Lond. A 305, 1-25. 

Lon&. A 309,551-575. 

t It is the fact that both (o',/o:)~ and the quadratic coupling are O(s), rather than simply the 
failure of the Boussinesq approximation, that negates the Mahony-Smith resonance. 



512 J .  W .  Miles 

THORPE, S. A. 1968a On standing internal gravity waves of finite amplitude. J .  Fluid Mech. 32, 

THORPE, S. A. 19683 On the shape of progressive internal waves. Phil. Trans. R. SOC. Lond. A 263, 

TSUJI, J. & NAOATA, Y. 1973 Stokes’ expansion of internal deep water waves to the fifth order. 

WHITHAM, G. B. 1974 Linear and Nonlinear Waves. Wiley. 

48!3-528. 

563-614. 

J .  Oceanogr. SOC. Japan 29, 61 (cited by Holyer 1979). 


